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Abstract: We consider an image decomposition model involving a variational
(minimization) problem and an evolutionary PDE. We utilize a linear inhomogenu-
ous diffusion constrained weighted total variation (TV) scheme for image adaptive
decomposition. An adaptive weight along with TV regularization splits a given im-
age into three components representing the geometrical (cartoon), textural (small
scale-microtextures), and edges (big scale-macrotextures). We study the wellposed-
ness of the coupled variational-PDE scheme along with an efficient numerical scheme
based on Chambolle’s dual minimization. We provide extensive experimental re-
sults in cartoon-texture-edges decomposition as well compare with other related
variational, anisotropic diffusion PDE based models.
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1. Introduction
Decomposing an image into meaningful components is an important and

challenging inverse problem in image processing. Image denoising is a very
well known example of image decomposition. In such a decomposition, the
given image is assumed to be under the influence of noise, and the main
purpose is to remove noise without destroying edges. This denoising task
can be regarded as a decomposition of the image into noise-free signal and
noise part. There exist various methodologies for image restoration, where
variational minimization and partial differential equation (PDE) are two of
the most popular ones [3].
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Another important example of image decomposition is based on its smooth
and texture components using the total variation (TV) regularization method.
This was first studied by Rudin et al [41] for image restoration. The TV reg-
ularization can be written as an unconstrained minimization,

min
u
ETV (u) =

∫
Ω

|∇u| dx+
1

2α

∫
Ω

|u− f |2 dx. (1)

The parameter α > 0 balances the fidelity term with respect to the TV regu-
larization. Let the given image be written as f = u+v, where we assume that
the function u models well structured homogeneous regions (cartoon) and v
defines oscillating patterns such as noise and texture. Meyer [28] established
the scale connection property of TV for image decomposition, namely that
the α parameter is related to the scale of objects in the image. In particular,
Meyer proved that if f is a characteristic function and is sufficiently small
with respect to a norm (|f |∗ ≤ 1/2α), then the minimization of the TV reg-
ularization (1) gives u = 0 and f = 0, which is counter-intuitive since one
expects u = f and v = 0. Thus, Meyer proposed to use dual of the closure in
the bounded variation (BV ) space of the Schwartz class for non-trivial solu-
tions, we refer to [28] for more details. This crucial fact has been exploited
by Vese and Osher [46] to obtain numerical approximations to the Meyer
decomposition model, see also [4, 6]. While the literature on cartoon and
texture decomposition is extensive by now, three lines of inquiry are closely
related to the work contained here.

• Different function spaces for modeling the textures and dis-
crete approximations. Following Meyer’s seminal work [28], various
authors have considered different function spaces to model textures
accurately [5, 25, 7, 33, 18, 21, 26, 23, 45].
• L1 fidelity based TV regularization models. In another related

direction the fidelity term can be made L1 and is proven to provide
contrast preserving restorations. We refer to Chan and Esedoglu [13]
for the geometric motivation and fine properties of L1 fidelity term,
see also [15]. Applications of L1-TV models for cartoon plus texture
decomposition are considered as well [31, 48, 49, 21, 16, 2].
• Different Regularizers instead of TV which is known to pro-

vide blocky solutions. The well-known staircasing property of the
TV regularization has been analyzed by many in the past [32, 10, 11]
and various modifications have also been studied. To avoid staircasing
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and blocky restoration results from the classical TV model there have
been a variety of methods studied previously. Weighted and adap-
tive [43, 42, 38, 37, 39], nonlocal-TV [24], and higher order [14, 22, 34].

Out of other related decomposition models we mention multi-scale parameter
based models [44, 20, 45]. Extension to multichannel images in general, RGB
images in particular, is also an important area of research [8]. In this paper,
we propose a new image decomposition scheme which splits a given image
into its geometrical and textural part along with an edge capturing diffusion
constraint. Following the success of weighted and adaptive TV models, our
scheme is based on a weighted TV regularization where the edge-variable-
based weight is computed in a data-adaptive way. The scheme is implemented
using the splitting method of [9] along with Chambolle’s dual minimization
scheme for the weighted TV regularization [12]. As a by-product of the im-
plementation via dual minimization we obtain an auxiliary variable which
is akin to textural component of the given image. Thus, the scheme stud-
ied here provides a cartoon, texture, edge (CTE) decomposition for digital
images, see Figure 1 for some examples. We consider the color image de-
composition using the dual minimization based color TV model. Multi-scale
decomposition following the recent work of Tang and He [45] is also given.
Moreover, we provide theoretical analysis of the model with a priori esti-
mates and prove its solvability. Extensive experimental results on synthetic,
textured real images are given. Further, illustrative comparison with other
state-of-the-art models are undertaken and the results indicate superior per-
formance of our scheme with respect to cartoon, texture separation and edge
preservation.

The rest of the paper is organized as follows. Section 2 introduces the
adaptive TV regularization coupled with a diffusion PDE. Section 3 provides
wellposedness results for our coupled model. In Section 4 we provide the
experimental results conducted on real and synthetic images and comparison
with related schemes. Finally, Section 5 concludes the paper.

2. Diffusion constrained regularization
2.1. Weighted total variation minimization. The total variation based
regularization functional [41] given in Eqn. (1) is well-known in edge preserv-
ing image restoration, we rewrite it as follows,

min
u
Eµ
TV (u) =

∫
Ω

|∇u| dx+ µ

∫
Ω

|u− f |2 dx (2)
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(a) Input (f) (b) Cartoon (u) (c) Texture v (d) (Pseudo) Edges (w)

Figure 1. The proposed coupled TV regularization with linear diffusion PDE model
provides cartoon, texture and edge decomposition of images.
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where now µ > 0 is the image fidelity parameter which is important in
obtaining results in denoising and cartoon+texture decomposition. A related
approach is to consider a weighted total variation,

min
u
Eµ
gTV (u) =

∫
Ω

g(x, u,∇u) |∇u| dx+ µ

∫
Ω

|u− f |2 dx (3)

where g(x, u,∇u) represents the generalized weight function. For example,
Bresson et al [9] have considered a convex regularization of the variational
model

min
u

{∫
Ω

g(x)|∇u| dx+ µ

∫
Ω

|u− f | dx
}

using a fast minimization based on a dual formulation to get a partition in the
geometric and texture information. Note that the image fidelity is changed to
L1 norm, we refer to [13] for more details. The convex regularization version
is considered in [9],

min
u,v

{∫
Ω

g(x)|∇u| dx+
1

2θ

∫
Ω

(u+ v − f)2 dx+ µ

∫
Ω

|v| dx
}
, (4)

where the parameter θ > 0 is chosen to be small so that f almost satisfies
f ∼ u + v, with the function u representing geometric information, i.e. the
piecewise-smooth regions, and function v captures texture information lying
in the given image. The function g is an edge indicator function that vanishes
at object boundaries, for example,

g(x) :=
1

1 + β |∇f(x)|2
,

where f is the original image and β is an arbitrary positive constant. Thus,
we see that TV based minimization models naturally lead to cartoon and
texture decomposition of digital images. The image fidelity parameter µ can
be made data adaptive to obtain texture preserving restorations, see [19].

2.2. Description of the model. In our work, we consider the follow-
ing regularization model which was motivated by a successful coupled PDE
modeling done in [40] for image restoration,

min
u

{∫
Ω

φ(x, u, |∇u|) dx+ µ

∫
Ω

|u− f | dx
}
, (5)

∂w

∂t
= λdiv(∇w) + (1− λ)(|∇u| − w). (6)
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(a) Original Image

(b) Cartoon component u at iterations, 100, 200, 300 and 400 using the proposed model

(c) Cartoon component u at iterations, 100, 200, 300 and 400 using the model in [9]

Figure 2. (Color online) Our adaptive diffusion constrained total variation scheme
(see Eqn. (9)) with constant µ, λ (second row) provides better edge preserving image de-
composition when compared to the traditional TV regularization model (Eqn. (4)) of [9]
(third row) as number of iterations increase from 100 to 400. The proposed scheme keeps
the structure without diffusing its boundary with the background.

The choice of regularizer φ depends on an application area and among a
plethora of convex and non-convex functions available with the classical
TV [41] and the non-local TV [24]. Motivated from the above discussions in
Section 2.1, and success enjoyed by the weighted L1-TV regularization model
in image denoising and segmentation, we use L1-TV regularizer model as a
prime example to illustrate our model here. The proposed CTE model thus
consists of a minimization along with a non-homogeneous diffusion equation,

min
u

{∫
Ω

g(w)|∇u| dx+

∫
Ω

µ(x) |u− f | dx
}
, (7)

∂w

∂t
= λ(x)div(∇w) + (1− λ(x))(|∇u| − w), (8)
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where g(w) = 1
1+w2 , or g(w) = exp(−w2) (Perona-Malik type diffusion func-

tions [35]), or g(w) = |w|−1, or g(w) = 1√
ε2+|w|2

(total variation diffusion

function [41]). That is we solve adaptive data fidelity based weighted total
variation minimization for the smooth part u using Eqn. (7) along with a
linear non-homogenous diffusion constraint on w by solving Eqn. (8). Note
that the balancing parameter λ and image fidelity µ taking values in [0, 1] are
important in our experimental results. Adaptive ways of choosing these pa-
rameters are explained below in Section 2.3. Following [9] we use a splitting
with an auxiliary variable v to obtain

min
u,v

{∫
Ω

g(w)|∇u| dx+
1

2θ

∫
Ω

(u+ v − f)2 dx+

∫
Ω

µ(x)|v| dx
}
, (9)

∂w

∂t
= λ(x)div(∇w) + (1− λ(x))(|∇u| − w).

Thus, the computed solution of these equations provides a representation
f ∼ u+v+w, where the function u represents the geometric information, the
function v captures the texture information, and the function w represents
the edges lying in the given image. Figure 2 shows a comparison of our
scheme (µ and λ were taken as 1) and Bresson et al [9] scheme Eqn. (4)
for a synthetic texture image which contains two different texture patterns.
As can be seen, our scheme (Figure 2(b)) retains the cartoon edges better
without diffusing the boundary and the shape is preserved in contrast to
Bresson et al’s result (Figure 2(c)).

The above coupled system is solved in an alternating iterative way for all
the variables (u, v, w) involved and Chambolle’s dual minimization scheme [12]
is used for the weighted TV minimization step. We start with the initial con-
ditions (u, v, w)|n=0 = (f,0,1) and use the following steps to compute CTE
components:

(1) Solving the linear diffusion PDE (8) for w with (u, v) fixed:

wn+1 = wn +
δt

(δx)2
(λ(x)∆̃wn + (1− λ(x)) (|∇u| − wn)), (10)

where δx is spatial discretization step (natural pixel grid), ∆̃ is the
standard finite difference discretization for the Laplacian and δt is the
step size.
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(2) Solving for the cartoon component u with (v, w) fixed:
The minimization problem in u is given by (see Eqn. (9)),

min
u

{∫
Ω

g(w)|∇u| dx+
1

2θ

∫
Ω

(u+ v − f)2 dx

}
. (11)

The solution of (11) is given by

u = f − v − θdiv p,

where p = (p1, p2) satisfies g(w)∇(θ div p − (f − v)) − |∇(θdiv p −
(f − v))|p = 0, which is solved using a fixed point method: p0 = 0
and

pn+1 =
pn + δt∇(θdiv(pn)− (f − v)/θ)

1 +
δt

g(w)
|∇(θdiv(pn)− (f − v)/θ)|

.

(3) Solving for the texture component v with (u,w) fixed:

min
v

{
1

2θ

∫
Ω

(u+ v − f)2 dx+

∫
Ω

µ(x)|v| dx
}
, (12)

and the solution is found as

v =


f − u− θµ(x) if f − u ≥ θµ(x),

f − u+ θµ(x) if f − u ≤ −θµ(x),

0 if |f − u| ≤ θµ(x).

Next we describe a data adaptive way for choosing the fidelity parameter µ
using the cartoon component at a previous iteration un.

Remark 1. We interchangeably use edges and pseudo-edges as the w com-
ponent provides an edge like features from a given image. The definition of
edges in a digital image depends on the context and many traditional defini-
tions depend on the magnitude of gradients (i.e., |∇I|), hence a solution of
the PDE (8) provides a pseudo-edge map, see Figure 1(d).

2.3. Adaptive fidelity parameter. Here, we consider the data adaptive
parameters selection strategies which can provide a balanced approach in ob-
taining better CTE decomposition results. For the image fidelity parameter
µ in Eqn. (7) we utilize a local histogram measure which is provides a better
texture separation [30]. For a given gray-scale image I : Ω −→ [0, L], let
Nx,r be the local region centered at x with radius r. We compute the local
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(a) Original image (b) µ←adaptive, λ←constant (c) µ←constant, λ←adaptive

Figure 3. (Color Online) The proposed model with adaptive µ1 (see Eqn. (14)) and
constant λ (= 1) provides better edge preservation in the cartoon component and captures
small scale oscillations in the texture component against constant µ (= 1) and adaptive λ
(using the definition of µ1 from Eqn. (14)).

histogram of the pixel x ∈ Ω and its corresponding cumulative distribution
function

Px(y) =
|{z ∈ Nx,r ∩ Ω | I(z) = y}|

Nx,r ∩ Ω
Fx(y) =

|{z ∈ Nx,r ∩ Ω | I(z) ≤ y}|
Nx,r ∩ Ω

(13)

for 0 ≤ y ≤ L, respectively. This allows us to define the following measurable
function µ : Ω→ R, such that for each x ∈ Ω,

µ(x) = µ1(x) =

∫ L
0 Fx(y) dy

max
x∈Ω

∫ L
0 Fx(y) dy

, (14)

allowing us to get a weight of how much nonhomogeneous intensity is present
in a local region Nx,r of a given pixel x. This new feature of the image
does not depend on the pixel properties instead provides regional properties,
see [30] for more details. Thus, we see that the µ is chosen according to local
histogram information and is computed in an image adaptive way using the
cartoon un in the iterative scheme (12). We compare our approach with two
related adaptive functions:

(1) The adaptive formulation of [40] which uses a summation of cartoon
components up-to iteration n.

µ2(x) =
n∑
i=0

Gρi ? u
n(x) (15)

with ρi = 1/i2 and at n = 0 the λ2(x) = 0.05.
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(2) Relative reduction rate based parameter proposed in local TV based
scheme [24].

µ3(x) =
Gρ ? |∇f(x)| −Gρ ? |Lσ ?∇f(x)|

Gρ ? |∇f(x)|
, (16)

where Lσ is a low pass filter. Note that this adaptive parameter uses
only the initial input image f whereas the previous choices use u
computed at a previous (Eqn. (14)) or every (Eqn. (15)) iteration.

Remark 2. Figure 3 explains the choice of adaptiveness in our coupled
model (7-8) for a synthetic image with different texture patterns. The first
case with µ adaptive, λ constant provides persisting cartoon component whereas
the second case with µ constant, λ adaptive (same local histogram based mea-
sure, Eqn. (14) is used for defining λ(x)) blurs the boundaries in the final
result. Thus, in what follows, we use only µ adaptive parameter to illustrate
our decomposition results.

Figure 4 shows a comparison of different adaptive µ functions for a synthetic
texture image. We see that the local histogram based µ1 captures the texture
components from all the quadrants. Moreover, Figure 4(e) shows that the
energy value decreases similarly for different µ functions as the iteration in-
creases. Figure 5 shows the usage of different µ function when we apply our
model (7-8) for the same synthetic image to obtain cartoon (u) + texture
(v) + pseudo-edges (w) decomposition. Note that the texture image v is
obtained by linearly transforming its range to [0, 255] for visualization pur-
poses. Differences outside this range are saturated to 0 and 255 respectively.
A similar transformation is applied to the edges (w) component as well. Next,
we study the wellposedness of the model (7-8) using weak solutions concept
and prove some a priori estimates and solvability of the proposed adaptive
coupled model.

3. Wellposedness
3.1. Preliminaries. In the section, Ω is considered to be a bounded domain
(i.e. an open set in R2) possessing the cone property. We recall that this
means that each point x ∈ Ω is a vertex of a finite cone Cx contained in
Ω, and all these cones Cx are congruent [1]. Obviously, rectangular domains
have this property. Fix also a time interval [0, T ], T > 0.
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(a) Input (f) (b) µ1 (c) µ2 (d) µ3 (e) Energy

Figure 4. (Color Online) Comparison of different µ functions computed using the
given input image. (a) Original image. (b) µ1 based on local histograms Eqn. (14). (c) µ2

based on the work of [40] Eqn. (15). (d) µ3 base on the work of [24] Eqn. (16). (e) Energy
versus iteration for different adaptive µ functions based energy minimization scheme (7-8).

(a) u (b) v (c) w (d) v + w

Figure 5. (Color Online) Different µ functions based CTE scheme (with λ constant)
results. Top: µ1 (local histogram) based result. Middle: µ2 result. Bottom: µ3 result. (a)
Cartoon u. (b) Texture v. (c) Pseudo-edges w. (d) v + w. Best viewed electronically,

zoomed in.
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We study wellposedness of the weighted TV

u(t, x) = u(x) : min
u:Ω→R

{∫
Ω

g(w(t, x))|∇u(x)| dx+

∫
Ω

µ(x)|u(x)− f(x)| dx
}
,(17)

with the diffusion constraint

∂w(t, x)

∂t
= ∆p,λw(t, x) + (1− λ(x))(|∇u(t, x)| − w(t, x)), (18)

w(t, x) = 0, x ∈ ∂Ω, (19)

w(0, x) = F (x), (20)

where p ≥ 2, and f : Ω → R, F : Ω → [0,+∞), λ : Ω → (0, 1], µ : Ω →
(0,+∞), g : [0,+∞)→ (0,+∞) are prescribed functions. The operator ∆p,λ

is a weighted p-Laplacian:

∆p,λv = λ div(|∇v|p−2∇v)− (1− |∇v|p−2)∇v · ∇λ. (21)

In particular, for p = 2 we recover the linear diffusion case. In this section,
for the sake of generality, we admit adaptive λ and generic g.

Note that w is non-negative by the maximum principle.
We consider the Dirichlet boundary condition for w, but other boundary

conditions can also be handled.
We use the brief notations Lq (q ≥ 1), Wm

q (m ∈ R), Wm,q
0 (m > 0) for

the Lebesgue and Sobolev spaces on Ω with values in R or R2. Parentheses
denote the bilinear form

(u, v) =

∫
Ω

u(x) · v(x) dx.

The norm in L2 is ‖u‖ =
√

(u, u).
The symbols S(J ;E), C(J ;E), L1(J ;E), etc., denote the spaces of Bochner

measurable, continuous, Bochner integrable, etc., functions on an interval
J ⊂ R with values in a Banach space E.

Let M be the Banach space of finite Radon measures on Ω. It is the dual
of the space C0(Ω) (the space of continuous functions on Ω that vanish at
∂Ω, see e.g. [17]).

Let BV be the space of functions of bounded variation on Ω. For v ∈ BV ,
and φ ∈ C(Ω), φ ≥ 0, the weighted total variation of v is

TVφ(v) = sup
ψ∈C∞0 (Ω): |ψ|≤φ

(v, divψ). (22)
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In particular, the total variation of u is

TV (v) = TV1(v). (23)

Due to lower semicontinuity of suprema, for every non-negative φ ∈ C(Ω)
and a weakly-* converging sequence {vm} ⊂ BV , we have

TVφ(v) ≤ lim
m→+∞

inf TVφ(vm). (24)

A more refined argument of the same nature proves

Lemma 1. For any ϕ ∈ S(0, T ;C(Ω)), ϕ ≥ 0 for a.a. t ∈ (0, T ), and a
weakly-* converging sequence {vm} ⊂ Lq(0, T ;BV ), q > 1, one has

TVϕ(t)(v(t)) ≤ lim
m→+∞

inf TVϕ(t)(vm(t)) (25)

for a.a. t ∈ (0, T ).

For v ∈ BV , |∇v| will denote the corresponding total variation measure.
The operator

|∇(·)| : BV →M (26)

is bounded. We recall the duality relation

TVφ(v) = 〈|∇v|, φ〉M×C0(Ω). (27)

The symbol C will stand for a generic positive constant that can take
different values in different lines. We sometimes write C(. . . ) to specify that
the constant depends on a certain parameter or value.

We will use the embeddings

BV ⊂ Lq, q ≤ 2, (28)

W 1
2 ⊂ Lq, q < +∞, (29)

W 1
p ⊂ C(Ω), p > 2, (30)

and

M⊂ W−1
q , q < 2, (31)

and the Poincaré inequality

‖v‖W 1
p
≤ C‖∇v‖Lp

, p ≥ 1, v
∣∣∣
∂Ω

= 0. (32)

Embeddings (28)–(31) are compact (except for (28) with q = 2).
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We assume that λ, ∇λ and g are Lipschitz functions,

λ0 = inf
x∈Ω

λ(x) > 0, g0 = sup
y≥0

g(y) < +∞,

and there exists a constant Cg so that∣∣∣d(log g(y))

dy

∣∣∣ ≤ Cg
1 + y

for a.a. y ≥ 0. (33)

The last condition means that g can have at most polynomial decay at in-
finity.

We assume that µ ∈ L∞(Ω), and

0 < µ1 = ess inf
x∈Ω

µ(x) ≤ µ2 = ess sup
x∈Ω

µ(x) < +∞.

Finally, we assume that

F ∈ L2, (34)

and at least one of the following three conditions holds:

p > 2, f ∈ BV, (35)

p = 2, ∃ q > 1 : f ∈ W 1
q , (36)

p = 2, f ∈ BV ∩ L∞, ∃ cg > 0 :
1

g(y)
≤ cg(1 + y), y ≥ 0. (37)

3.2. A priori estimates. Before specifying the underlying function spaces
and defining the notion of solution, let us derive a formal a priori estimate
for problem (17)–(20).

The Euler-Lagrange equation for (17) is

− div

(
g(w)

∇u
|∇u|

)
+ µ

u− f
|u− f |

= 0,
∂u/∂ν

|∇u|

∣∣∣∣∣
∂Ω

= 0. (38)

For each t ∈ [0, T ], multiplying (38) by w(u−f)
g(w) , and integrating over Ω, we

get (
g(w)

∇u
|∇u|

,∇
(
w(u− f)

g(w)

))
+

(
µw

g(w)
, |u− f |

)
= 0. (39)
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Thus,(
∇u
|∇u|

,∇w(u− f)

)
−
(
∇u
|∇u|

,
g′(w)w

g(w)
∇w(u− f)

)
+ (w, |∇u|)−

(
w
∇u
|∇u|

,∇f
)

+

(
µw

g(w)
, |u− f |

)
= 0. (40)

Multiplying (38) by u−f
g(w) , and integrating over Ω, we find

−
(
∇u
|∇u|

,
g′(w)

g(w)
∇w(u− f)

)
+(1, |∇u|)−

(
∇u
|∇u|

,∇f
)

+

(
µ

g(w)
, |u− f |

)
= 0.

(41)
Since the last term is non-negative, we conclude that

TV (u) ≤ TV (f) + Cg‖∇w‖‖u− f‖. (42)

Multiplying (38) by u− f , and integrating over Ω, we derive

(g(w), |∇u|) + ‖µ(u− f)‖L1
≤ g0 TV (f) (43)

Multiplying (38) by u|u|, and integrating over Ω, we deduce

2(g(w)|u|, |∇u|) +

(
u− f
|u− f |

, µu|u|
)
. (44)

It is not difficult to obtain the following scalar inequality

|a− b|3 ≤ 2(a− b)a|a|+ 2b2|a− b|, a, b ∈ R, (45)

which enables to conclude from (44) that

‖√µ(u− f)‖2 + 4(g(w)|u|, |∇u|) ≤ 2‖√µf‖2. (46)

Hence, due to (28),

‖u− f‖ ≤ C(‖f‖) ≤ C(‖f‖BV ). (47)

By (42) and (47),
TV (u) ≤ C(1 + ‖∇w‖). (48)

Multiplying (18) by w, and integrating over Ω, we get

1

2

d‖w‖2

dt
+ (λ, |∇w|p) + ((1−λ)w,w) = ((1−λ)w, |∇u|)− (w∇λ,∇w). (49)

Using Hölder’s inequality and (33), we deduce from (40) that

(w, |∇u|) ≤ (1 + Cg)‖∇w‖Lp
‖u− f‖Lp/p−1 + (w, |∇f |). (50)
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From (49), (50) and Young’s inequality we infer

1

2

d‖w‖2

dt
+
λ0

2
‖∇w‖pLp

≤ C(g, λ0, p)‖u−f‖p/p−1
Lp/p−1

+C(λ, p)‖w‖p/p−1
Lp/p−1

+(w, |∇f |).
(51)

Provided (35) or (36), estimate (47), and embeddings (30) or (29), resp.,
imply

d‖w‖2

dt
+ λ0‖∇w‖pLp

≤ C(1 + ‖w‖p/p−1 + ‖w‖W 1
p
). (52)

By (32),(34) and usual arguments, (52) yields

‖w‖L∞(0,T ;L2) + ‖w‖Lp(0,T ;W 1,p
0 ) ≤ C. (53)

In case (37), we multiply (38) by wu
g(w) , and integrate over Ω, arriving at(

∇u
|∇u|

, u∇w
)
−
(
∇u
|∇u|

, u
g′(w)w

g(w)
∇w
)

+ (w, |∇u|)

+

(
µw

g(w)
, |u− f |

)
+

(
u− f
|u− f |

,
µwf

g(w)

)
= 0. (54)

Then, since the penultimate term is non-negative,

(w, |∇u|) ≤ (1 + Cg)‖∇w‖ ‖u‖+ µ2cg(|f |w, 1 + w) ≤ C(1 + ‖∇w‖+ ‖w‖2).
(55)

Now, (49) and (55) yield

d‖w‖2

dt
+ λ0‖∇w‖pLp

≤ C(1 + ‖w‖2), (56)

which implies (53). In all the three cases, (43), (48) and (53) imply

‖u‖L∞(0,T ;L1) + ‖u‖Lp(0,T ;BV ) ≤ C. (57)

The operator

Λ : BV →M, Λ(v) = (1−λ)|∇v|, 〈Λ(v), φ〉M×C0(Ω) = 〈|∇v|, (1−λ)φ〉M×C0(Ω),

is bounded, so

‖(1− λ)|∇u|‖Lp(0,T ;M) ≤ C. (58)

The weighted p-Laplacian operator

∆p,λ : W 1,p
0 → W−1

p/p−1
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is also bounded. Hence, (18),(31),(53) and (58) yield an estimate for the
time derivative of w:

‖w′‖Lp(0,T ;W−1q ) ≤ C, q < 2,
q

q − 1
≥ p. (59)

3.3. Solvability.

Definition 1. Assume (34) and (35). A pair of functions (u,w) from the
class

u ∈ L∞(0, T ;L1) ∩ Lp(0, T ;BV ),

w ∈ L∞(0, T ;L2) ∩ Lp(0, T ;W 1,p
0 ) ∩W 1

p (0, T ;W−1
p/p−1),

is called a weak solution to problem (17)–(20) if

TVg(w(t))(u(t)) + ‖µ(u(t)− f)‖L1
≤ TVg(w(t))(u(t)) + ‖µ(u(t)− f)‖L1

, (60)

for any u ∈ S(0, T ;BV ) and a.a. t ∈ (0, T ),

w′ −∆p,λ + (1− λ)w = (1− λ)|∇u| (61)

in the space W−1
p/p−1 for a.a. t ∈ (0, T ), and

w(0) = F (62)

in W−1
p/p−1.

Remark 3. This definition is correct since all members of (61) belong to
W−1

p/p−1 for a.a. t ∈ (0, T ) (cf. the end of Subsection 3.2), and

w ∈ W 1
p (0, T ;W−1

p/p−1) ⊂ C([0, T ];W−1
p/p−1).

Theorem 1. Assume (34) and (35). Then there exists a weak solution to
(17)–(20).

Proof : We can prove the existence of weak solutions via approximation of (17)–
(20) by a more regular problem, and consequent passage to the limit (cf.
[40, 50]). Let (um, wm) be a sequence of “approximate” solutions (possibly
with “approximate” data fm and Fm). It essentially suffices to show that
(60)–(62) is the limiting case of (17)–(20), i.e., that it is possible to pass to
the limit in all the members.

Due to estimates (53), (57), (59), without loss of generality we may suppose
that

um → u weakly − ∗ in L∞(0, T ;M), (63)
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um → u weakly − ∗ in Lp(0, T ;BV ), (64)

wm → w weakly − ∗ in L∞(0, T ;L2), (65)

wm → w weakly in Lp(0, T ;W 1,p
0 ), (66)

w′m → w′ weakly in Lp(0, T ;W−1
p/p−1). (67)

Note that

u ∈ L∞(0, T ;L1) ⊂ L∞(0, T ;M) ∩ Lp(0, T ;BV ). (68)

By (30), (31) and the Aubin-Lions-Simon theorem [50],

wm → w strongly in Lp(0, T ;C(Ω)), (69)

wm → w strongly in C([0, T ];W−1
p/p−1), (70)

so
wm(0)→ w(0) in W−1

p/p−1, (71)

and we can pass to the limit in (62).
Using the representation

‖v‖L1
= sup

ϕ∈L∞, ‖ϕ‖L∞≤1

(ϕ, v), (72)

and lower semicontinuity of suprema, we can check that

‖µ(u(t)− f)‖L1
≤ lim

m→+∞
inf ‖µ(um(t)− f)‖L1

= lim
m→+∞

inf ‖µ(um(t)− fm)‖L1

(73)
for a.a. t ∈ (0, T ). By Lemma 1,

TVg(w(t))(u(t)) ≤ lim
m→+∞

inf TVg(w(t))(um(t)). (74)

But

|TVg(wm(t))(um(t))− TVg(w(t))(um(t))| ≤ ‖g(wm(t))− g(w(t))‖L∞TV (um(t))

≤ C(g)‖wm(t)− w(t)‖L∞TV (um(t)), (75)

so

‖TVg(wm)(um)−TVg(w)(um)‖Lp/2(0,T ) ≤ C‖wm−w‖Lp(0,T ;L∞)‖um‖Lp(0,T ;BV ) → 0.
(76)
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Therefore, without loss of generality,

TVg(wm(t))(um(t))− TVg(w(t))(um(t))→ 0 (77)

for a.a. t ∈ (0, T ). Due to (73), (74), (77), we can pass to the limit in (60).
On the other hand, (60) with u = um, f = fm, w = wm, u = u gives

TVg(wm(t))(um(t)) + ‖µ(um(t)− fm)‖L1
≤ TVg(wm(t))(u(t)) + ‖µ(u(t)− fm)‖L1

.(78)

Similarly to (75)–(77), we can check that

TVg(wm(t))(u(t))− TVg(w(t))(u(t))→ 0. (79)

From (73), (74), (77)–(79) we conclude that

TVg(w(t))(um(t))→ TVg(w(t))(u(t)) (80)

for a.a. t ∈ (0, T ).
Fix any non-negative function φ ∈ C0(Ω). Let

κ(t) =

∥∥∥∥ φ

g(w(t))

∥∥∥∥
L∞

(81)

and

ϕ(t) = κ(t)g(w(t))− φ. (82)

For a.a. t ∈ (0, T ), ϕ(t) is a non-negative continuous function on Ω. By
Lemma 1 and (80), we infer that

TVφ(u(t)) = κ(t)TVg(w(t))(u(t))− TVϕ(t)(u(t))

≥ lim
m→+∞

sup(κ(t)TVg(w(t))(um(t))−TVϕ(t)(um(t))) = lim
m→+∞

supTVφ(um(t)).

(83)

But, due to (25),

TVφ(u(t)) ≤ lim
m→+∞

inf TVφ(um(t)). (84)

Thus,

TVφ(u(t)) = lim
m→+∞

TVφ(um(t)), (85)

for every non-negative φ ∈ C0(Ω), which yields

|∇um(t)| → |∇u(t)| (86)

weakly-* in M for a.a. t ∈ (0, T ). Then (31) implies

(1− λ)|∇um(t)| → (1− λ)|∇u(t)| (87)
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strongly in W−1
p/p−1 for a.a. t ∈ (0, T ). Due to (64) and (31),

‖(1− λ)|∇um|‖Lp(0,T ;W−1p/p−1) ≤ C. (88)

By (87), (88) and [29, Proposition 2.8, Remark 2.10],

(1− λ)|∇um| → (1− λ)|∇u| strongly in Lq(0, T ;W−1
p/p−1), ∀q < p. (89)

Rewrite (61) as

w′ + Aw = K(u,w), (90)

where

A(w) = − div(λ|∇w|p−2∇w)+(1−λ)w, K(u,w) = −∇w ·∇λ+(1−λ)|∇u|.
(91)

It is easy to see that the operator A : W 1,p
0 → W−1

p/p−1 is monotone, coercive

and hemi-continuous (cf. [27]). By (69) and (89),

K(um, wm)→ K(u,w) strongly in Lp/p−1(0, T ;W−1
p/p−1).

Hence, we can successfully pass to the limit in (90) via Minty-Browder mono-
tonicity technique (cf. [27]).

Definition 2. Assume (34) and (36) or (37). A pair of functions (u,w)
from the class

u ∈ L∞(0, T ;L1) ∩ L2(0, T ;BV ), (92)

w ∈ L∞(0, T ;L2) ∩ L2(0, T ;W 1,2
0 ) ∩W 1

2 (0, T ;W−1
q ), ∀q < 2, (93)

is called a pseudosolution to problem (17)–(20) if there is a sequence (um, wm, pm)
such that each pair (um, wm) is a weak solution to (17)–(20) with p = pm,

um → u weakly − ∗ in L∞(0, T ;M),

um → u weakly − ∗ in L2(0, T ;BV ),

wm → w weakly − ∗ in L∞(0, T ;L2),

wm → w weakly in L2(0, T ;W 1,2
0 ),

wm → w strongly in L2(0, T ;Lq), ∀q < +∞,
wm → w strongly in C([0, T ];W−1

q ), ∀q < 2,

w′m → w′ weakly in L2(0, T ;W−1
q ), ∀q < 2,

pm → 2.
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Theorem 2. Assume (34) and (36) or (37). Then there exists a pseudoso-
lution to (17)–(20).

The proof is based on estimates (53), (57), (59) and the proof of Theorem
1.

4. Experimental Results
4.1. Implementation details. The proposed scheme is implemented using
the dual minimization [12] for the weighted TV (Eqn. (7)) and explicit Euler
finite difference scheme for the non-homogenous linear diffusion (Eqn. (8)).
The edge indicator function g(w) = 1/(1 + w2) is used for all the results
reported here. We obtained similar results for other g functions. The adap-
tive µ1 based results are reported here unless otherwise stated explicitly and
µ2 provided similar results whereas µ3 provided blurred cartoon components,
see Section 2.3 for details. The parameters δx = 1, δt = 1/8 and θ = 10−2 are
fixed, and the best results according to the max(

∣∣un+1 − un
∣∣,∣∣vn+1 − vn

∣∣≤ ε)
are shown. By constant λ or µ in the results we mean they are taken as
constant value 1. Currently there are no quantitative ways to evaluate dif-
ferent decomposition algorithms. In particular which smooth, texture and
edge separation model are better is an open research question in image qual-
ity assessment. The algorithm is visualized in MATLAB 7.8(R2009a) on a
64-bit Windows 7 laptop with 3GB RAM, 2.20GHz CPU. It takes < 10 sec
for 50 iterations for 3 channels image of size 481× 321.

4.2. Image decomposition results.

4.2.1. Gray-scale images. We first show decomposition results of Bresson et
al [9] with our model in Figure 6 for a synthetic image which consists of two
different texture regions. Comparing the cartoon - texture decomposition
of our scheme (Figure 6(b)) with the results of Bresson et al (Figure 6(c)),
we see that they behave different visually. For example, the shape of the
diamond at the center is preserved well in our scheme whereas the Bresson
et al [9] scheme blurs it in the final result. Figure 6(c) shows the energy value
against number of iterations for the same synthetic image, which indicates
that our adaptive CTE scheme decreases the energy values comparable to
Bresson et al [9] model. More grayscale image decomposition results are
given in Figure 1. We see that the cartoon component obtained are piecewise
constant segments indicating the potential for image segmentation [36]. The
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(a) Original (b) u & v (Our) (c) u & v ([9]) (d) Energy Vs Iterations

Figure 6. (Color online) Comparison of our constant µ, λ proposed scheme (second
column) with Bresson et al [9] (third column), shows that our scheme preserves large-scale
textures and shape boundaries. Energy value comparison between our scheme CTE and
Bresson et al. [9] shows similar convergence property. Best viewed electronically, zoomed

in.

texture and edges component are complementary and it is clear that edges
are based on the cartoon subregions, see for example, Figure 1(d) top row.

4.2.2. Color images. We further provide image decomposition for color im-
ages [8, 16] by using vectorial TV version in Eqn. (7) summing up the con-
tributions of the separate channels. In these sense, we consider the following
vectorial non-homogenous diffusion equation:

min
u=(u1,u2,u3)

{
3∑
i=1

∫
Ω

g(wi)|∇ui| dx+
3∑
i=1

∫
Ω

µi(x) |ui − fi| dx

}
,

∂wi
∂t

= λi(x)div(∇wi) + (1− λi(x))(|∇ui| − wi),

were each scalar function ui : Ω → R, 1 ≤ i ≤ 3 represent one compo-
nent of the RGB color system. Figure 7 shows the cartoon components of
our CTE scheme with constant and adaptive µ1 against the traditional TV
based scheme of [9] for two standard RGB test images. As can be seen, our
scheme obtains better edge preserving cartoon (u) components. The close-up
shots indicate that our scheme also avoids blurring of edges, see for example
Barbara face. See also Figure 2 where the proposed scheme with adaptive
µ1 provides better shape preservation as the number of iterations increase
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(b) Our constant µ, λ based scheme (c) Bresson et al [9]

(b) Our adaptive µ1, constant λ based scheme (c) Bresson et al [9]

Figure 7. (Color online) Our diffusion constrained total variation scheme provides
better edge preserving cartoon component u when compared to the traditional TV regular-
ization model [9]. Even with constant µ, λ the proposed scheme provides better results (see
top row (b)). The crop regions highlight that the proposed scheme provides better preser-
vation of large scale textures compared to [9] model. Best viewed electronically, zoomed
in.

from 100 to 400. Next, Figures 8-10 shows decomposition for a variety of
RGB images for two different iteration values in our proposed CTE scheme
with constant µ against adaptive µ1 based results. As can be seen in Fig-
ure 8, increasing the number of iterations removes more texture details and
provides piecewise constant (smoother) cartoon images. Our adaptive µ1

based scheme results (last row) on the other hand keep most of the salient
edges. This can be seen further in Figure 9 (last row) where the adaptive µ1

based scheme captures only small scale oscillations corresponding to texture
components whereas the constant µ based results remove strong edges as
well. Figure 10 show the corresponding edge functions, and it can be seen
that adaptive scheme has more information than in constant parameter case.
Thus, we conclude that, using adaptive µ provides an image adaptive way
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Figure 8. (Color online) Effect of constant µ in color image decomposition using our
coupled scheme on the cartoon (u) component. First row: Original color RGB images.
Cartoon component result for constant µ, λ with total number of iterations, Second row:
100, and Third row: 200. As can be seen increasing the number of iterations removes
more texture details and provides piecewise constant cartoon image. Last row: Shows the
proposed scheme results with adaptive µ1, see Eqn. (14) and constant λ. Best viewed
electronically, zoomed in.

of obtaining edge preserving cartoon components without sacrificing overall
decomposition properties.

4.3. Image denoising results. Note that the decomposition provides piece-
wise cartoon component which is obtained using a weighted TV regulariza-
tion in an edge preserving way, see Figure 8 (last row). Hence, as a byproduct
we obtain image denoising, with u the denoised image and v + w the ‘noise’
part. To compare the schemes quantitatively for denoising we utilize two
commonly used error metrics in the image denoising literature, one is the
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Figure 9. (Color online) Corresponding texture components v. Arrangement is as in
Figure 8. Best viewed electronically, zoomed in.

Figure 10. (Color online) Corresponding edge functions w. Arrangement is as in
Figure 8. Best viewed electronically, zoomed in.
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classical peak signal to noise ratio (PSNR) [3], and the other one is the mean
structural similarity measure (MSSIM) [47]:

(1) PSNR is given in decibels (dB). A difference of 0.5 dB can be identified
visually. Higher PSNR value indicates optimum denoising capability.

PSNR(u) := 20 ∗ log 10

(
umax√
MSE

)
dB, (94)

where MSE = (mn)−1
∑∑

(u−u0), m×n denotes the image size, umax
denotes the maximum value, for example in 8-bit images umax = 255.

(2) MSSIM index is in the range [0, 1]. The MSSIM value near one implies
the optimal denoising capability of the scheme [47] and is mean value
of the SSIM metric. The SSIM is calculated between two windows ω1

and ω2 of common size N ×N ,

SSIM(ω1, ω2) =
(2µω1

µω2
+ c1)(2σω1ω2

+ c2)

(µ2
ω1

+ µ2
ω2

+ c1)(σ2
ω1

+ σ2
ω2

+ c2)
, (95)

where µωi
the average of ωi, σ

2
ωi

the variance of ωi, σω1ω2
the covariance,

c1, c2 stabilization parameters, see [47] for more details.

Remark that the SSIM is a better error metric than PSNR as it provides
a quantitative way of measuring the structural similarity of denoised image
against the original noise-free image. Table 1 compares the proposed scheme
with that of [40] using the both PSNR (dB) and MSSIM error metrics average
for Berkeley segmentation dataset (BSDS) images. We implemented both the
schemes on the full Berkeley segmentation dataset of 500 noisy images for
two different noise levels and obtained similar improvements. Figures 11-12
show some example images corresponding to Table 1. As can be seen from
the zoomed in versions, the proposed CTE scheme provides cleaner cartoon
components (denoised images, see Figures 11(b-e)-12(b,c)) in contrast to
original coupled PDE model [40] which either excessively blurs out details
(Figure 11(f,g)) or keeps noisy regions (Figure 12(d)) in final results.

4.4. Multi-scale decomposition. Following Tang and He [45] we can make
the weighted TV model with multi-scale parameter λ. Note that this is
slightly different from the original multi scale usage in [44], here we use it
in the constraint Eqn. (8). Let us briefly recall the model proposed in [45]
where the texture component v is modeled using Gp norm. That is, the
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(a) Input noise 20%

(b) Proposed 30 iterations (c) Proposed 100 iterations

(µ←adaptive, λ←constant ) (µ←adaptive, λ←constant)

(d) Proposed 30 iterations (e) Proposed 40 iterations

(µ←constant, λ←adaptive ) (µ←constant, λ←adaptive)

(f) [40] 20 iteractions (g) [40] 60 iteractions

Figure 11. (Color online) Better edge preserving image restoration results were ob-
tained using our scheme in comparison with the original coupled PDE model [40]. The
iteration numbers were chosen according to maximum MSSIM values, see Table 1 for the
corresponding values.
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(a) Input noise 30%
(b) Proposed 100 iteractions

(µ←adaptive, λ←constant)

(c) Proposed 40 iteractions
(d) [40] 60 iterations

(µ←constant, λ←adaptive)

Figure 12. (Color online) Better edge preserving image restoration results were ob-
tained using our scheme in comparison with the original coupled PDE model [40]. The
iteration numbers were chosen according to maximum MSSIM values, see Table 1 for the
corresponding values.

minimization is carried out for both u, v,

inf
u,v

{
E(f, λ;u, v) = |u|BV (Ω) + µ‖f − u− v‖2

L2(Ω) + λ‖v‖Gp(Ω)

}
,

with Gp consisting of all distributions which can be written as,

v = ∂xg1 + ∂yg2 = div(~g), ~g ∈ Lp(Ω,R2).

The Gp norm is defined as,

‖v‖Gp(Ω) = inf
{
‖~g‖Lp(Ω) | v = div(~g), ~g ∈ Lp(Ω,R2)

}
.

We utilize the same modeling for the texture component v in our splitting
step of the proposed weighted TV model (see Eqn. (4)),

min
u,v

{∫
Ω

|∇u| dx+ µ‖f − u− v‖2
L2(Ω) + λ‖v‖Gp(Ω)

}
(96)

Finally, we compare our multi-scale version of the scheme (96) with the multi-
scale TV decomposition results of [45]. Figure 13 shows the comparison result
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Method
µ←constant µ←adaptive

Figure Noise Iterations
Convergence Time

PSNR (dB) MSSIM
λ← adaptive λ← constant (Seconds)

CTE (Proposed)
√ 11 (b) 20% 30 30.47 28.7938 0.7723

11 (c) 20% 100 38.71 27.3510 0.7147

12 (b) 30% 100 38.61 26.5238 0.6774

CTE (Proposed)
√ 11 (d) 20% 30 30.96 28.2464 0.7237

11 (e) 20% 40 32.20 26.1983 0.6796
12 (c) 30% 40 32.33 26.7451 0.6792

[40]
√ 11 (f) 20% 20 5.07 27.3646 0.7178

11 (g) 20% 60 40.57 25.4476 0.6970

12 (d) 30% 60 40.30 25.0559 0.6543

Table 1. Image denoising error metrics (average) comparison using original coupled
PDE scheme [40] for different noise levels and parameters on the Berkeley segmentation
dataset (BSDS) 500. Some examples corresponding to the entries are shown above in
Figure 11 and Figure 12.

on a synthetic image for 5 steps and our scheme retains the cartoon compo-
nent clearly than the Tang and He [45]. Moreover, the texture components
show a progressive capture of small scale oscillations.

5. Conclusion
We have presented a new image decomposition model coupling a variational

and PDE problem via a weighted total variation regularization algorithm.
Our main contribution is twofold: 1) the proposed decomposition model gets
an image decomposition into its cartoon, texture and edge components with
fixed and adaptive parameters by utilizing a local histogram along with a
diffusion equation. Extensive experiments using a fast dual minimization
based splitting implementation indicates that the proposed scheme is useful
for edge preserving image decomposition on real and noisy images and com-
parative results indicate the proposed scheme is useful in denoising natural
images as well in multi scale image decomposition. 2) We fashioned a new
well posed scheme to transform the non-linear problem to a set of subprob-
lems that are much easier to solve quickly via an optimization technique and
a linear diffusion PDE solution.
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Multiscale cartoon and texture extraction using our proposed CTE method

(a) u0 (b)
∑1

i=0 ui (c)
∑2

i=0 ui (d)
∑3

i=0 ui (f)
∑4

i=0 ui

(a) v0 (b)
∑1

i=0 vi (c)
∑2

i=0 vi (d)
∑3

i=0 vi (f)
∑4

i=0 vi

Multiscale cartoon and texture extraction using the hierarchical decomposition of Tang and He [45]

(a) u0 (b)
∑1

i=0 ui (c)
∑2

i=0 ui (d)
∑3

i=0 ui (f)
∑4

i=0 ui

(a) v0 (b)
∑1

i=0 vi (c)
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